Physics of transportation: Towards optimal capacity using the multilayer network framework
نویسندگان
چکیده
Because of the critical role of transportation in modern times, one of the most successful application areas of statistical physics of complex networks is the study of traffic dynamics. However, the vast majority of works treat transportation networks as an isolated system, which is inconsistent with the fact that many complex networks are interrelated in a nontrivial way. To mimic a realistic scenario, we use the framework of multilayer networks to construct a two-layered traffic model, whereby the upper layer provides higher transport speed than the lower layer. Moreover, passengers are guided to travel along the path of minimal travelling time and with the additional cost they can transfer from one layer to another to avoid congestion and/or reach the final destination faster. By means of numerical simulations, we show that a degree distribution-based strategy, although facilitating the cooperation between both layers, can be further improved by enhancing the critical generating rate of passengers using a particle swarm optimisation (PSO) algorithm. If initialised with the prior knowledge from the degree distribution-based strategy, the PSO algorithm converges considerably faster. Our work exemplifies how statistical physics of complex networks can positively affect daily life.
منابع مشابه
Analyzing the performance of different machine learning methods in determining the transportation mode using trajectory data
With the widespread advent of the smart phones equipping with Global Positioning System (GPS), a huge volume of users’ trajectory data was generated. To facilitate urban management and present appropriate services to users, studying these data was raised as a widespread research filed and has been developing since then. In this research, the transportation mode of users’ trajectories was identi...
متن کاملA Mathematical Model for Sustainable and Resilient Supply Chain by Considering Synchronization in the Production and Distribution Network
Nowadays, supply chain management (SCM) is an interesting problem that has attracted the attention of many researchers. Transportation network design is one of the most important fields of SCM. In this paper, a logistics network design is considered to optimize the total cost and increase the network stability and resiliency. First, a mixed integer nonlinear programming model (MINLP) is formula...
متن کاملResilience-Based Framework for Distributed Generation Planning in Distribution Networks
Events with low probability and high impact, which annually cause high damages, seriously threaten the health of the distribution networks. Hence, more attention to the issue of enhancing network resilience and continuity of power supply, feels more than ever, all over the world. In modern distribution networks, because of the increasing presence of distributed generation resources, an alternat...
متن کاملOptimal Capacities in Discrete Facility Location Design Problem
Network location models comprise one of the main categories of location models. These models have various applications in regional and urban planning as well as in transportation, distribution, and energy management. In a network location problem, nodes represent demand points and candidate locations to locate the facilities. If the links network is unchangeably determined, the problem will be ...
متن کاملTechnical Note: An opportunity cost maintenance scheduling framework for a fleet of ships: A case study
The conventional method towards deriving schedule for a fleet of ships to minimize cost alone has the short-coming of not addressing the problem of operation revenue losses associated with delays during maintenance at ships dockyards. In this paper, a preventive maintenance schedule for a fleet of ships that incorporates op-portunity cost is presented. The idea is to assign a penalty cost to al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016